图片
网站标志
图片
 
文章正文
煤层气井电泵排采工艺技术的研究及应用
作者:管理员    发布于:2017-11-22 14:00:34    文字:【】【】【

  煤层气井电泵排采工艺技术的研究及应用任源峰吕卫东冯义堂(华北石油管理局井下作业公司,河北廊坊065007)方,需要进行相应的改进。本文介绍了在近五年来对12口煤层气井的电泵排采试验的基础上逐步改进了包括变频调速技术在内的电泵排采工艺,使电泵排采技术成为一套比较完善的煤层气井排采工艺技术。

  廊坊市万庄-华北石油井下邮政编码ie065007.―Electronic前言我国从20世纪90年代将电泵用于高产水煤层气井的排采,由于工艺不够完善,应用效果较差。近几年来随着煤层气勘探开发力度的不断加大,一批斜井、多分支水平井或高产水煤层气井相继出现。由于管式泵或螺杆泵等排采工艺已很难满足生产需要,而电泵具有排量大、扬程高、适应范围广(可用于斜井、水平井)等特点,因此被更多地用在煤层气排采中。与采油工艺相比,将电泵用于煤层气排采有着很多不同之处,一是要求电泵具有良好的可控制性,能够按照排采要求随时调整泵的排量,从而实现平稳降压;二是电泵排出的流体由油水混合物变为气水混合物;三是泵送的流体从单相流变为两相流;四是生产方式由油管产液变为油管排水、套管产气;五是排出流体中含砂(压裂砂、要1它具2有1过载in欠载fle过(压6u欠ie缺相、过Hshi响House.地层砂)煤粉、泥浆等。这些不同点增加了排采难度,要求应用电泵排采时,必须对相关的配套工艺措施进行改进,如引入变频调速系统、提高气水分离效率、防止煤粉堵塞、防止砂卡等。本文针对煤层气的排采特点,通过对电泵排采原理进行分析,突破了煤层气排采的关键技术一变频调速控制系统和多级气水分离技术,对影响煤层气排采效果的主要因素进行了分析,制定出相应措施,并在生产中得到应用。经过武试3、吉试4、吉试6、吉试16、武试1、武M1―1井现场实际应用,并通过不断地完善提高,形成了一套完整的煤层气排采工艺技术,取得了较好的效果。

  2电泵排采原理及关健技术21电泵排采工艺原理煤层气井电泵排采过程中首先将潜油电泵机组装置通过油管下入井下,在变频器的控制下,电力经过变压器、变频器、动力电缆使井下电动机带动多级离心泵作高速旋转。井中流体通过多级旋转式气体分离器、多级离心泵、单流阀、油管、采气树被举升到地面。随着流体产出,环空液面不断平稳下降,煤层压力也在平稳下降,当煤层压力低于煤层气解吸压力时,煤层中的吸附气大量解吸出来。油管排出的气水混合物经过地面流程分离和计量后,煤层气进入输气管线集输,水则进入处理站进行处理。而大量的煤层气主要通过油套环形空间从套管阀门产出,计量后进入输气管线集输。

  22电泵排采关健技术根据煤层气排采特点,我们认为煤层气电泵排采工艺的关键技术是变频调速控制系统和离心式气体分离技术。

  变频调速控制系统在煤层气排采过程中要求适时监测液面,保证液面平稳下降,以实现平稳降压,形成大的压降范围,提高煤层气的采收率。电泵的变频调速控制系统核心是变频器,华北井下电泵服务中心与山东风光电子仪器厂合作生产出电泵专用变频器。该变频器由整流滤波、逆变电路和CPU三大部分组成,适用于工作电压600 ~2500V的所有潜油电泵。它具备变频和工频两种工况功能,变频工况可以很方便地调整频率,使其满足不同排量下平稳降压的需温、短路以及失速保护功能,可自动记录和显示井下电机的三相运行电流、频率、电压等参数,因而比其它系列变频器的可靠性高、工作性能稳定。

  电泵采用变频调速控制系统具有以下优点:一是通过方便地调频可以改变泵的排量,满足煤层气排采平稳降液的要求;二是软启动特性明显,在低频率仅2~5Hz下可启动,降低了启动时对电力系统和泵系统的高电流冲击,延长了井下机组的寿命;三是由于工作频率设计高达到65Hz,使电泵在原有的基础上可提高生产能力30大大提高了泵的工作范围,减少了投资;四是在额定频率范围内调节转速,其工作力矩是恒定的,不会影响到泵的扬程,提高了电泵系统的效率;五是节能效果显著,节电在15~30,特别是减小了启动时对电网容量的需求量。

  离心式气体分离技术分离器通常作为泵的吸入口,固定在泵的下端。它能把水中的溶解气和游离气在进泵之前分离出来,使多级离心泵能有效地在含气井中工作,达到提高泵效的目的。据室内和现场试验表明:当其转速达到400r/min以上时,气水分离效果良好,基本满足煤层气井排采的工艺要求。

  离心式气体分离器的结构主要由轴、螺旋举升器、低压吸入叶轮、导轮、导向叶轮、分离器转子、交叉导轮、壳体、上下接头等组成。其工作原理是:当井中的流体通过分离器吸入口、螺旋举升器被送入低压吸入叶轮和导轮增压后,再进入导向叶轮,导向叶轮使流体从螺旋状态突然变成直线运动状态进入分离腔扩容,分离腔内高速旋转的分离器转子产生的离心力将流体中质量大的液体甩到分离腔内壁,进入分流壳流道供泵抽汲。质量轻的气体则聚集在中心部位,沿轴流至分流壳,从排气孔进入油套环形空间,完成分离过程。

  3影响电泵排采效果的主要因素及解决方法影响电泵排采效果的主要因素有:气体、煤粉、泥浆、砂(压裂砂、地层砂)、腐蚀性介质、电缆位置、泵挂深度和井身结构、电泵选型等几个方面。

  1旋转式双级气体分离器减小气体对泵效的影在口袋里0颗粒较小的煤屑吸入泵M水带出地)lishing reserved.气体会严重影响井下多级离心泵工作性能。研究表明,当进入离心泵流体气液比大于10时,离心泵的扬程将降低;在叶轮的高速旋转下,溶解气逐步被释放出来,随着进泵气体的继续增加,使泵出现气锁,导致泵出液忽大忽小,甚至不出液,泵效大大降低。为防止煤层气进泵,减小对泵工作效率的影响,可采取下列措施:一是使用旋转式双级气体分离器,分离器长度由600mm加长到1200,气体经过一级分离后再进入下一级继续分离,目的是相对延长流体进入泵的时间,尽量多地在分离器释放出溶解气和游离气,此措施效果较好;二是在短时间内升高频率到75~85Hz急速提高分离器转子的转速,从而提高旋转式气体分离器的分离效果;三是将泵下入煤层以下口袋里,煤层出来的气体在重力分异作用下,大量从环空中流出;四是可在分离器处装导流罩改变液体流向,将液体从下向上进入分离器吸入口改变为液体从上向下进入分离器吸入口气体在重力作用下分离,从环空中流出,减少进泵气体量;五是选择泵型合理,避免产液量低的井用大排量的泵,导致泵在低速下长期运行,分离器在低速下气体分离效果差。

  32腐蚀性介质的影响及解决办法有的煤层气井产出的流体中常含有强腐蚀性的硫化物、二氧化碳、煤粉及高矿化度,这些腐蚀性介质对电泵机组的井下部件的腐蚀十分严重,常以点蚀、穿孔和大小不同的侵蚀面出现。为减小腐蚀性介质的影响,可采用以下几种方法解决,一是泵和分离器中与介质直接接触的零件和连接螺钉均应采用不锈钢制造;二是电机、保护器、泵和分离器采用高温烤漆的外壳;三是选用不锈钢铠皮电缆。

  33煤粉、砂、泥浆、垢的影响及解决办法大部分煤层气井排出的水中含有煤粉,压裂后的井还会含有压裂砂,多分支水平井在排液初期,还会排出大量泥浆。随着泵的运行,煤粉、泥浆、垢这些杂质粘附于泵内叶轮上的数量会越来越多,导致流道面积减少,摩阻增大,电机电流增大,泵排量降低,严重时甚至将泵堵塞或卡泵,泵的运行效率显然会逐步降低和检泵周期缩短。

  为了防止煤粉、煤屑的大量吸入,我们在气水分离器外部加装了两层60~80目的不锈钢滤网,使较大颗粒的煤屑和压裂砂不能被吸入泵内,沉积面。同时在离心泵上部不再安装单流阀和泄压阀,目的是在发现泵排量出现下降时,通过停泵几分钟,利用管柱内外水的压差使管柱内的液体倒流将泵内和滤网外部的煤粉冲洗掉,避免滤网被糊死,实践证明这些措施是行之有效的。

  3.4电缆对环空液面监测的影响及消除方法在排采过程中,一般都用回声仪频繁地监测环空液面以确定合理的排采工作制度。测液面时通过套管发声,传至井下,遇到油管节箍或液面声波反射,地面仪器接受反射声波。如果电缆卡的不紧或松驰,声波遇到电缆产生反射,影响测液面的准确度。另外,如电缆靠近套管阀门一侧,电缆和电缆卡子也对声波产生反射,影响测液面。要求一定要把电缆卡紧固定好,同时在装井口时转动油管将固定电缆一侧转离套管阀门。

  3.5泵挂深度和井身结构的影响及对策煤层气的排采要求尽量降低压力,一般要求把液面降至煤层,有的还要求裸露煤层,这就要把泵下至煤层或煤层以下。对于射孔或筛管完成井,可以将泵下入口袋里,口袋长度大于100m.对裸眼完成井,为防止坍塌卡泵,一般下至煤层顶部。因此,要根据区域产水量和所要下泵的大小,考虑套管尺寸。如果选用井下机组外径与套管尺寸不能匹配,泵难以满足排水要求。

  3.6电泵选型要考虑的因素在煤层气排采中,电泵选型与采油有很大不同。首先,根据区域产水量确定一定扬程下的大产水量,电泵在正常工作时要满足这一要求。在配套设备时,首先要考虑排出液的大密度。由于水中含有较多煤粉、砂和钻井液等杂质,使其密度达到1.0g/cm3以上,相对于采油井在同等工况下,其负荷增加许多。因此,选择离心泵时,必须以排出液的大密度推算泵的轴功率,这样才能保证所配置的电机不是小马拉大车。其次要考虑选用额定排量比实际生产要求高一等级的离心泵,因为,排水与采油介质不同,会影响到泵的排量。我们经过现场测量和相关技术参数的分析对比,得出了一套可行的电泵选型的经验公式,据此选择的电泵配套设备,不仅满足了生产要求,而且还使设备达到了合理匹配,公式如下。

  Q额一选用泵的额定排量,m3/d;Q大一生产要求的大产液量,m3/d P轴=Q额H额P水/K P轴一离心泵轴功率,kW;H额一额定扬程,m;P液一排出液的大密度,按1.1g/cm3计算;K一系数(3)所配电机额定功率P机额一所配电机额定功率,kW;n机一电机运行效率,一般为90(4)变频调速器额定功率P频额=P机额/0.85 P频额一变频调速器额定功率,kW;(5)电源变压器额定容量P变额=P频额/0.75COS=P频额/0. P变额一电源变压器额定容量,IKVA;COS令一变压器有功功率因数,一般为0. 0.75―表示变压器供给的电能须富裕所带负荷4排采工艺现场应用bookmark3 2003年以来,我们将电泵排采工艺技术应用于武试1、吉试4、吉试6、吉试16、武试3、武M1―1等煤层气井上,并通过不断地改进完善,使其适应于不同地区、不同煤介的压裂完井、洞穴完井、水平多分支煤层气井,解决了高产水井的排采问题。现场应用情况见表1.相信随着煤层气井勘探开发工作量的增加,电泵在煤层气排采中的作用会日益显著。

  表1电泵排水采气工艺现场应用情况井号地区完井方式泵深(m)动液面(m)高日产量累计产水量(m3)气(m3)水(m3)吉试4大宁一吉县压裂1003. 5结论工艺技术研究表明,电泵是一种理想的排采设备,能较好地适应于各种煤层气井排采的工艺要求。通过现场试验得出以下结论。

  对高产水量的煤层气井,用电泵进行大排量强排水,有利于缩短排采时间,加快降压速度,降低排采成本尽快获得高产气量。

  变频调速电泵是一种理想排采设备,由于其具有大的速度调整范围,因此产液量可在大范围调整,有利于平稳控制降液速度,从而实现平稳降压。

  对单井试气而言,电泵是一项高投入、高成本的排采方式。如果用于规模性开发,可以大大降低成本提高排采经济效益。

  电泵机组结构复杂,在现场条件下难以维护,应该配备备用设备,以缩短检泵时维护泵所需时间,保持排采连续性。

  为延长检泵周期、降低成本使电泵能长期高效运转,应根据井的具体情况对电泵机组进行优化设计。

图片
脚注栏目
脚注信息
版权所有 Copyright(C)2012-2013 博山消防泵,博山水泵厂家——淄博博山华杰水泵厂